Kantorovich-type inequalities for operators via D-optimal design theory
نویسندگان
چکیده
منابع مشابه
Kantorovich type inequalities for ordered linear spaces
In this paper Kantorovich type inequalities are derived for linear spaces endowed with bilinear operations ◦1 and ◦2. Sufficient conditions are found for vector-valued maps Φ and Ψ and vectors x and y under which the inequality Φ(x) ◦2 Φ(y) ≤ C + c 2 √ Cc Ψ(x ◦1 y) is satisfied. Complementary inequalities are also given. Some results of Dragomir [J. Inequal. Pure Appl. Math., 5 (3), Art. 76, 20...
متن کاملOptimal Hardy–littlewood Type Inequalities for Polynomials and Multilinear Operators
Abstract. In this paper we obtain quite general and definitive forms for Hardy–Littlewood type inequalities. Moreover, when restricted to the original particular cases, our approach provides much simpler and straightforward proofs and we are able to show that in most cases the exponents involved are optimal. The technique we used is a combination of probabilistic tools and of an interpolative a...
متن کاملOptimal Weyl-type inequalities for operators in Banach spaces
Let (sn) be an s-number sequence. We show for each k = 1, 2, . . . and n ≥ k + 1 the inequality
متن کاملAbout the Bivariate Operators of Kantorovich Type
The aim of this paper is to study the convergence and approximation properties of the bivariate operators and GBS operators of Kantorovich type.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2005
ISSN: 0024-3795
DOI: 10.1016/j.laa.2005.03.022